

C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Sciences & Life Sciences

Course: Bachelor of Science (Mathematics)

Semester: I

Subject Code: MAM202-1C

Subject Name: Linear Algebra & Complex Analysis

				Teaching hours/ Week		Į.		Evaluation Scheme/ Semester									
Sr		Subjec					Credi	Credi	Theory			Tutorial / Practical			Total		
No	Category	t Code	Subject Name	Th	Tu	Pr	hours	ι Points	Evaluation		essment	End Semester Exams					
									Ma rks	Marks	Mar ks	Duration	Mark s	Duration	Mark s	Duratio n	
2	MAJOR- II	MAM2 02-1C	Linear Algebra & Complex Analysis	3	_	2	5	4	10 10 05	Assignment MCQ Attendance	50	2	25	1	-	-	100

Course Objective:

The main objectives of this course are

- The definitions of matrix and types of matrices.
- Algebra of matrices.
- Methods to solve system of linear equations.
- Eigen value and Eigen vectors of matrices.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS
I	Introduction to Determinants and Matrices, different types of Matrices, theorems on matrices, elementary operations on matrices, Row Echelon & Reduced Row Echelon form of a Matrix, Solution of system of linear equations, solving system of linear equations simultaneously, Inverse of Matrix, Rank of Matrix, Matrix inversion using RRE form. Characteristic equation of a matrix and Cayley-Hamilton theorem and its use in finding inverse of matrix, Eigen value and Eigen vector of square matrices, eigenvalue of special type of matrices, Diagonalization of matrix.	15
II	Complex numbers, Polar form of complex number. De'Moivre's theorem, nth roots of a complex number, Fundamental theorem of algebra (statement only), Multiple roots and test for multiplicity.	15
Ш	Expansions of $\cos n\theta$, $\sin n\theta$, $\tan n\theta$ in terms of $\cos \theta$, $\sin \theta$, $\tan \theta$ respectively $(n \in N)$. Expansion of $\cos^n \theta$, $\sin^n \theta$ in a series of $\cos^n \theta$ or $\sin^n \theta$ of multiple angles of θ ($n \in N$). Expansion of $\cos \theta$, $\sin \theta$, $\tan \theta$ in terms of θ . Exponential, circular and hyperbolic functions.	15

Course Outline for Practical

SR. NO	COURSE CONTENT					
1	RE and RRE form and rank of a matrix, Inverse of a matrix					
2	Problems based on eigen values and eigen vectors and Diagonalization					
3	3 Cayley- Hamilton's Theorem and its applications.					
4	4 Descarte's rule of sign, Relation between roots and coefficients.					
5	5 Solution of cubic equations (Cardan's method), Solution of biquadratic equations (Ferarri's method)					
6	Algebra of Complex numbers, De'Moivre's theorem.					
7	7 Expansions of cos $n\theta$, sin $n\theta$, tan $n\theta$ in terms of cos θ , sin θ , tan θ respectively $(n \in N)$.					
8	Expansion of $cos^n \theta$, $sin^n \theta$ in a series of <i>cosines</i> or <i>sines</i> of multiple angles of θ ($n \in N$).					

TEACHING METHODOLOGY:

Conventional method (classroom blackboard teaching)

ICT Techniques

Teaching through the classroom

Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

LEARNING OUTCOME:

After the successful completion of the course, students will be able to

- Solve systems of linear equations.
- Manipulate matrix algebra and determinants.
- Evaluate Eigen values and Eigen vectors.
- Understand the concepts of complex numbers and some complex functions.

Arrangement of lectures duration and practical session as per defined credit numbers:

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation	
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical	
Unit – 1 Unit – 2	15 15	30	3	1	45+30	4	
Unit – 3 TOTAL	15 45	30	3	1	75	4	

Evaluation:

Theory Marks	Practical Marks	Total Marks	
75	25	100	

REFERENCE BOOKS:

- 1. Advanced Engineering Mathematics', E. Kreyszig, New Age International Publishing Co.
- 2. 'Complex Variables and Applications', R. V. Churchill, J. W. Brown, McGraw-Hill Book Co.
- 3. Elementary Linear Algebra', Howard Anton and Chris Rorres, Wiley Pub.
- 4. A Textbook of Matrices', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.
- 5. 'Higher Engineering Mathematics, Thirty-fifth edition', **B. S. Grewal**, *Khanna Publication*.