C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Sciences \& Life Sciences

Course: Bachelor of Science (Mathematics)
Semester: I
Subject Code: MAM202-1C
Subject Name:Linear Algebra \& Complex Analysis

Course Objective :

The main objectives of this course are

- The definitions of matrix and types of matrices.
- Algebra of matrices.
- Methods to solve system of linear equations.
- Eigen value and Eigen vectors of matrices.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS
I	Introduction to Determinants and Matrices, different types of Matrices, theorems on matrices, elementary operations on matrices, Row Echelon \& Reduced Row Echelon form of a Matrix, Solution of system of linear equations, solving system of linear equations simultaneously, Inverse of Matrix, Rank of Matrix, Matrix inversion using RRE form. Characteristic equation of a matrix and Cayley-Hamilton theorem and its use in finding inverse of matrix, Eigen value and Eigen vector of square matrices, eigenvalue of special type of matrices, Diagonalization of matrix.	15
II	Complex numbers, Polar form of complex number. De'Moivre's theorem, nth roots of a complex number, Fundamental theorem of algebra (statement only), Multiple roots and test for multiplicity.	15
III	Expansions of $\cos n \theta, \sin n \theta, \tan n \theta$ in terms of $\cos \theta, \sin \theta, \tan \theta$ respectively ($n \in N$). Expansion of $\cos ^{n} \theta, \sin ^{n} \theta$ in a series of cosines or sines of multiple angles of $\theta(n \in N)$. Expansion of $\cos \theta, \sin \theta, \tan \theta$ in terms of θ. Exponential, circular and hyperbolic functions.	15

SR. NO	COURSE CONTENT	Lab Hours
$\mathbf{1}$	RE and RRE form and rank of a matrix, Inverse of a matrix	
$\mathbf{2}$	Problems based on eigen values and eigen vectors and Diagonalization	
$\mathbf{3}$	Cayley- Hamilton's Theorem and its applications.	
$\mathbf{4}$	Descarte's rule of sign, Relation between roots and coefficients.	
$\mathbf{5}$	Solution of cubic equations (Cardan's method), Solution of biquadratic equations (Ferarri's method)	30
$\mathbf{6}$	Algebra of Complex numbers, De'Moivre's theorem.	
$\mathbf{7}$	Expansions of $\cos n \theta, \sin n \theta, \tan n \theta$ in terms of $\cos \theta, \sin \theta, \tan \theta$ respectively $(n \in N)$.	
$\mathbf{8}$	Expansion of $\cos ^{n} \theta, \sin ^{n} \theta$ in a series of $\operatorname{cosines}$ or sines of multiple angles of $\theta(n \in N)$.	

TEACHING METHODOLOGY:

Conventional method (classroom blackboard teaching)
ICT Techniques
Teaching through the classroom
Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

LEARNING OUTCOME:

After the successful completion of the course, students will be able to

- Solve systems of linear equations.
- Manipulate matrix algebra and determinants.
- Evaluate Eigen values and Eigen vectors.
- Understand the concepts of complex numbers and some complex functions.

Arrangement of lectures duration and practical session as per defined credit numbers:

Units	Lecture Duration (In Hrs.)		Calculation of Credits (In Numbers)		Total Lecture Duration	Credit Calculation
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical
Unit $\mathbf{- 1}$	15	30	3	1	$45+30$	4
Unit $-\mathbf{2}$	15	30	3	1	4	
Unit $-\mathbf{3}$	15		$\mathbf{3 0}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{7 5}$
TOTAL	$\mathbf{4 5}$	$\mathbf{3 0}$	$\mathbf{4}$			

Evaluation:

Theory Marks	Practical Marks	Total Marks
75	25	$\mathbf{1 0 0}$

REFERENCE BOOKS:

1. Advanced Engineering Mathematics', E. Kreyszig, New Age International Publishing Co.
2. 'Complex Variables and Applications', R. V. Churchill, J. W. Brown, McGraw-Hill Book Co.
3. Elementary Linear Algebra', Howard Anton and Chris Rorres, Wiley Pub.
4. A Textbook of Matrices', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.
5. 'Higher Engineering Mathematics, Thirty-fifth edition', B. S. Grewal, Khanna Publication.
